Improvement of a Problem from American Mathematical Monthly

Abstract

In this note we give an improvement to a problem that was published in the American
Mathematical Monthly.

1 Introduction

For a triangle ABC let A, B, C denote its angles, a, b, ¢ the lengths of the corresponding sides, R
and r the circumradius and inradius, respectively, and s the semiperimeter.
In triangle ABC' the following inequality holds (see [1], [2], or [3]):

(I —cosA)(1 —cosB)(1—cosC) > cosAcosBcosC. (1.1)

In 2008, Cezar and Tudorel Lupu proposed the following problem (see [4])
For an acute triangle with side-lengths a, b, ¢, inradius r» and semiperimeter s, prove that

3\/57")

(1.2)

(1 —cosA)(1 —cosB)(1—cosC) > cos Acos BcosC (2 -

A solution based on Popoviciu’s inequality was published in the October 2009 issue of the American
Mathematical Monthly.

By inequality ([5]): s > 3v/3r, we know that (1.2) is stronger than (1.1).

In this note, we give an improvement of (1.2).

2 Main results

Theorem 2.1. In triangle ABC,

(1 —cosA)(1 —cosB)(1—cosC) > cos Acos BcosC (2 - Z) . (2.1)

In order to prove Theorem 2.1, we need the following Lemma.

Lemma 2.1. (See [5]) In triangle ABC, the following inequality holds.

s* <2R* + 10Rr — % + 2(R — 2r)\/R(R — 2r). (2.2)
Proof of Theorem 2.1:

T

Proof. Because 1 — cosx = 2sin? 3, we have

2B . o C

A
(1 —cos A)(1 — cos B)(1 — cos C) = 8sin? 5sin - sin” o,

By the known identities in a triangle

. . i C r
sin — sin — sin — = —
2 2 2 4R’
2 2 2
s“—4R* —4Rr —r
A B C =
cos A cos B cos 2 ,
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(2.1) is equivalent to

r2 s2 — 4R% — 4ARr — 12 2r
> 2
2R2 — 4R?

2 2 2 Rr?
& s5° <A4R° +4Rr +r +R . (2.3)

—r

Using Lemma 2.1, it suffices to prove

2R* + 10Rr — 12 + 2(R — 2r)\/R(R — 2r) < 4R® + 4Rr + r* + RRiQ (2.4)
& 2(R—2r)y/R(R - 2r) < 2R* — 6Rr + 2r> + RRZ (2.5)
Because
9R2 — 6Rr + 2r2 + RRi — 2R - 2r)/R(R — 2r),
—9(R—2)(R—1)— w — 2R —2r)/R(RE =2,
_ f;—_fj” [2(R 1)~ — 2R~ ) VR(R ~2r)]
we have
2(R—71)2 =1 =2R(R—2r)+ 712 >0,
(2(R—r)?—r?)° - (2(R —7)V/R(R — 2r))2 =rt>0,
and by Euler’s inequality R > 2r, we obtain
9R? — 6Rr + 212 + RRiZ —2(R—2r)\/R(R — 2r) > 0.
This completes the proof of (2.1). O

Remark 2.1. If triangle ABC is acute, by inequality ([5]): s < 3\/2§R, we conclude that (2.1) is
stronger than (1.2)
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